Publications

  1. 2025

    A decision-making framework for user authentication using keystroke dynamics

    Computers & Security Elsevier B.V. ISSN 0167-4048; eISSN 1872-6208 Vol. 155 Art. 104494 pp. 1–12 DOI: 10.1016/j.cose.2025.104494
    Abstract

    Sophisticated cyber attacks increasingly threaten critical infrastructures, highlighting the need for more reliable user authentication. This work proposes a deep learning–based framework that employs keystroke dynamics and Siamese neural networks to distinguish legitimate users from impostors. To address variability in password lengths, we introduce interpolation-based data fusion strategies that standardize keystroke features across datasets. The proposed framework incorporates adaptive threshold strategies to determine decision boundaries relative to a user’s baseline typing behaviour. Experimental evaluation on fused CMU and KeyRecs datasets achieved equal error rates as low as 0.11–0.12. The results demonstrate the robustness and scalability of the approach for detecting insider threats.

  2. 2024

    Red team tactics against malware detection using adversarial attacks

    DAMSS: 15th conference on data analysis methods for software systems, Druskininkai, Lithuania, November 28–30, 2024 eISBN 9786090711125 (Vilnius University Proceedings; vol. 52, eISSN 2669-0233) pp. 21–22 DOI: 10.15388/DAMSS.15.2024
    Abstract

    Static and dynamic malware analysis are widely used in cybersecurity, though attackers have adapted to these methods. To improve detection, researchers increasingly combine these methods with machine/deep learning for faster, more efficient malware classification. However, adversaries exploit weaknesses to craft adversarial malware that evades detection. We aim to design a deep learning–based C2 framework to enhance red team training and improve anomaly detection beyond reliance on automated tools.

  3. 2025

    Kenkėjiškų programų aptikimo gerinimas taikant kelių klasių gerybinės programinės įrangos analizę

    Lietuvos magistrantų informatikos ir IT tyrimai: konferencijos darbai, 2025-05-13. Vilnius: Vilniaus universiteto leidykla eISSN 2783-784X (Vilnius University Open Series, eISSN 2669-0535) pp. 24–27 DOI: 10.15388/LMITT.2025.3
    Santrauka

    Šiame darbe siūloma metodika, skirta gerybinės ir kenkėjiškos programinės įrangos kategorizavimui, siekiant padidinti kenkėjiškų programų aptikimo tikslumą. Metodika remiasi statinės analizės duomenimis, derinamais su šiuolaikiniais duomenų apdorojimo ir vizualizacijos metodais.

Scroll to Top